322 research outputs found

    A new beamline for laser spin-polarization at ISOLDE

    Full text link
    A beamline dedicated to the production of laser-polarized radioactive beams has been constructed at ISOLDE, CERN. We present here different simulations leading to the design and construction of the setup, as well as technical details of the full setup and examples of the achieved polarizations for several radioisotopes. Beamline simulations show a good transmission through the entire line, in agreement with observations. Simulations of the induced nuclear spin-polarization as a function of atom-laser interaction length are presented for 26,28^{26,28}Na, [1] and for 35^{35}Ar, which is studied in this work. Adiabatic spin rotation of the spin-polarized ensemble of atoms, and how this influences the observed nuclear ensemble polarization, are also performed for the same nuclei. For 35^{35}Ar, we show that multiple-frequency pumping enhances the ensemble polarization by a factor 1.85, in agreement with predictions from a rate equations model. [1] J. Phys. G: Nucl. Part. Phys./174408400

    Wannier-function description of the electronic polarization and infrared absorption of high-pressure hydrogen

    Full text link
    We have constructed maximally-localized Wannier functions for prototype structures of solid molecular hydrogen under pressure, starting from LDA and tight-binding Bloch wave functions. Each occupied Wannier function can be associated with two paired protons, defining a ``Wannier molecule''. The sum of the dipole moments of these ``molecules'' always gives the correct macroscopic polarization, even under strong compression, when the overlap between nearby Wannier functions becomes significant. We find that at megabar pressures the contributions to the dipoles arising from the overlapping tails of the Wannier functions is very large. The strong vibron infrared absorption experimentally observed in phase III, above ~ 150 GPa, is analyzed in terms of the vibron-induced fluctuations of the Wannier dipoles. We decompose these fluctuations into ``static'' and ``dynamical'' contributions, and find that at such high densities the latter term, which increases much more steeply with pressure, is dominant.Comment: 17 pages, two-column style with 14 postscript figures embedded. Uses REVTEX and epsf macro

    Pattern formation of reaction-diffusion system having self-determined flow in the amoeboid organism of Physarum plasmodium

    Full text link
    The amoeboid organism, the plasmodium of Physarum polycephalum, behaves on the basis of spatio-temporal pattern formation by local contraction-oscillators. This biological system can be regarded as a reaction-diffusion system which has spatial interaction by active flow of protoplasmic sol in the cell. Paying attention to the physiological evidence that the flow is determined by contraction pattern in the plasmodium, a reaction-diffusion system having self-determined flow arises. Such a coupling of reaction-diffusion-advection is a characteristic of the biological system, and is expected to relate with control mechanism of amoeboid behaviours. Hence, we have studied effects of the self-determined flow on pattern formation of simple reaction-diffusion systems. By weakly nonlinear analysis near a trivial solution, the envelope dynamics follows the complex Ginzburg-Landau type equation just after bifurcation occurs at finite wave number. The flow term affects the nonlinear term of the equation through the critical wave number squared. Contrary to this, wave number isn't explicitly effective with lack of flow or constant flow. Thus, spatial size of pattern is especially important for regulating pattern formation in the plasmodium. On the other hand, the flow term is negligible in the vicinity of bifurcation at infinitely small wave number, and therefore the pattern formation by simple reaction-diffusion will also hold. A physiological role of pattern formation as above is discussed.Comment: REVTeX, one column, 7 pages, no figur

    Spin chains with dynamical lattice supersymmetry

    Full text link
    Spin chains with exact supersymmetry on finite one-dimensional lattices are considered. The supercharges are nilpotent operators on the lattice of dynamical nature: they change the number of sites. A local criterion for the nilpotency on periodic lattices is formulated. Any of its solutions leads to a supersymmetric spin chain. It is shown that a class of special solutions at arbitrary spin gives the lattice equivalents of the N=(2,2) superconformal minimal models. The case of spin one is investigated in detail: in particular, it is shown that the Fateev-Zamolodchikov chain and its off-critical extension admits a lattice supersymmetry for all its coupling constants. Its supersymmetry singlets are thoroughly analysed, and a relation between their components and the weighted enumeration of alternating sign matrices is conjectured.Comment: Revised version, 52 pages, 2 figure

    Microbial DNA fingerprinting of human fingerprints: dynamic colonization of fingertip microflora challenges human host inferences for forensic purposes

    Get PDF
    Human fingertip microflora is transferred to touched objects and may provide forensically relevant information on individual hosts, such as on geographic origins, if endogenous microbial skin species/strains would be retrievable from physical fingerprints and would carry geographically restricted DNA diversity. We tested the suitability of physical fingerprints for revealing human host information, with geographic inference as example, via microbial DNA fingerprinting. We showed that the transient exogenous fingertip microflora is frequently different from the resident endogenous bacteria of the same individuals. In only 54% of the experiments, the DNA analysis of the transient fingertip microflora allowed the detection of defined, but often not the major, elements of the resident microflora. Although we found microbial persistency in certain individuals, time-wise variation of transient and resident microflora within individuals was also observed when resampling fingerprints after 3 weeks. While microbial species differed considerably in their frequency spectrum between fingerprint samples from volunteers in Europe and southern Asia, there was no clear geographic distinction between Staphylococcus strains in a cluster analysis, although bacterial genotypes did not overlap between both continental regions. Our results, though limited in quantity, clearly demonstrate that the dynamic fingerprint microflora challenges human host inferences for forensic purposes including geographic ones. Overall, our results suggest that human fingerprint microflora is too dynamic to allow for forensic marker developments for retrieving human information

    Magnetic moments of short-lived nuclei with part-per-million accuracy: Towards novel applications of β\beta-detected NMR in physics, chemistry and biology

    Get PDF
    We determine for the first time the magnetic dipole moment of a short-lived nucleus with part-per-million (ppm) accuracy. To achieve this two orders of magnitude improvement over previous studies, we implement a number of innovations into our β\beta-detected Nuclear Magnetic Resonance (β\beta-NMR) setup at ISOLDE/CERN. Using liquid samples as hosts we obtain narrow, sub-kHz linewidth, resonances, while a simultaneous in-situ 1^1H NMR measurement allows us to calibrate and stabilize the magnetic field to ppm precision, thus eliminating the need for additional β\beta-NMR reference measurements. Furthermore, we use ab initio calculations of NMR shielding constants to improve the accuracy of the reference magnetic moment, thus removing a large systematic error. We demonstrate the potential of this combined approach with the 1.1 s half-life radioactive nucleus 26^{26}Na, which is relevant for biochemical studies. Our technique can be readily extended to other isotopic chains, providing accurate magnetic moments for many short-lived nuclei. Furthermore, we discuss how our approach can open the path towards a wide range of applications of the ultra-sensitive β\beta-NMR in physics, chemistry, and biology.Comment: re-submitte

    Fermionic NNLL corrections to b -> s \gamma

    Full text link
    In this paper we take the first step towards a complete next-to-next-to-leading logarithmic (NNLL) calculation of the inclusive decay rate for BXsγB \to X_s\gamma. We consider the virtual corrections of order \alphas^2 n_f to the matrix elements of the operators O1{O}_1, O2{O}_2 and O8{O}_8 and evaluate the real and virtual contributions to O7{O}_7. These corrections are expected to be numerically important. We observe a strong cancelation between the contributions from the current-current operators and O7O_7 and obtain, after applying naive non-abelianization, a reduction of the branching ratio of 3.9% (for μ=3.0\mu=3.0 GeV) and an increase of 3.4% (for μ=9.6\mu=9.6 GeV).Comment: 38 pages, result extended to allow for an explicit photon energy cut-off, appendix and references added, final result and conlclusions unchange

    For whom and under what circumstances do school-based energy balance behavior interventions work? Systematic review on moderators

    Get PDF
    The aim of this review was to systematically review the results and quality of studies investigating the moderators of school-based interventions aimed at energy balance-related behaviors. We systematically searched the electronic databases of Pubmed, EMBASE, Cochrane, PsycInfo, ERIC and Sportdiscus. In total 61 articles were included. Gender, ethnicity, age, baseline values of outcomes, initial weight status and socioeconomic status were the most frequently studied potential moderators. The moderator with the most convincing evidence was gender. School-based interventions appear to work better for girls than for boys. Due to the inconsistent results, many studies reporting non-significant moderating effects, and the moderate methodological quality of most studies, no further consistent results were found. Consequently, there is lack of insight into what interventions work for whom. Future studies should apply stronger methodology to test moderating effects of important potential target group segmentations
    corecore